

TEC2011-25995 EventVideo (2012-2014)

Strategies for Object Segmentation, Detection and Tracking in Complex

Environments for Event Detection in Video Surveillance and Monitoring

D1.2v1

DIVA DOCUMENTATION

Video Processing and Understanding Lab

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Supported by

D1.2v1 DiVA Documentation

AUTHOR LIST

Juan C. San Miguel Juancarlos.Sanmiguel@uam.es

CHANGE LOG

Version Data Editor Description

0.0 08-06-2012 Juan C. San Miguel Initial version

1.0 24-06-2012 José M. Martínez Version 1

D1.2v1 DiVA Documentation 1

CONTENTS

1. INTRODUCTION .. 2

1.1. SOFTWARE REQUIREMENTS ... 2
1.2. DOCUMENT STRUCTURE .. 2

2. DIVA FRAMEWORK OVERVIEW ... 5

2.1. DESIGN CRITERIA ... 5
2.2. MAIN CHARACTERISTICS ... 5

3. PHYSICAL PART .. 7

3.1. STRUCTURE ... 7
3.2. EMPLOYED TECHNOLOGIES.. 7

4. LOGICAL PART ... 8

4.1. INTERCONNECTION BETWEEN LAYERS ... 8
4.2. ACQUISITION LAYER .. 9

4.3. DATA MANAGEMENT LAYER ... 10
4.3.1. DataServer .. 11
4.3.2. ContextServer ... 12

4.4. PROCESSING LAYER ... 12
4.4.1. Template for Processing algorithms... 14

5. DIVA FOR SPECIFIC DOMAIN ANALYSIS ... 15

6. CONCLUSIONS AND FUTURE WORK .. 16

REFERENCES .. I

GLOSARY ... II

APPENDIX ... III
A. EXAMPLE OF USAGE ... III

A.1 FrameServer manager .. iii
A.2 Processing algorithms ... v

D1.2v1 DiVA Documentation 2

1. Introduction

In this document, we describe a framework for designing and developing distributed video

processing algorithms in which the video feed can be obtained from various sources available in

the Escuela Politécnica Superior of the Universidad Autónoma de Madrid (e.g., live cameras or

video repositories). This framework is hereafter called DiVA (Distributed Video Analysis). An

earlier version of this framework was previously published in 2008 [1].

The DiVA framework establishes a distributed environment for acquiring multiple video

sources, communicating with different processing algorithms, applying sequential or parallel

processing schemes, visualizing partial results and formalizing the use of contextual information

in the analysis process whilst allowing to real time operation. Both the framework and the

available applications have been developed and implemented by the Video Processing and

Understanding Lab in the Escuela Politécnica Superior of the Universidad Autónoma de Madrid.

1.1. Software requirements

Some external libraries have been included in DiVA for providing basic functionalities such

as TCP/IP connection, low-level artificial vision and file management. Currently, DiVA uses the

following:

 Microsoft Fundation Classes (MFC) 6.0. This package is used for network

connections and multithread management.

 Intel® Open Source Computer Vision Library version 2.0 (OpenCV). DiVA

framework has been developed on top of OpenCV library that simplifies the

management and creation of computer vision applications. However, some OpenCV

structures have been modified and new characteristics have been included.

Due to the restrictions of the libraries used, DiVA only works on Windows OS.

1.2. Document structure

This document contains the following chapters:

 Chapter 1: Introduction to this document

 Chapter 2: Overview of the DiVA framework

D1.2v1 DiVA Documentation 3

 Chapter 3: Describes the physical part of the DiVA framework (i.e., the network and

technologies used)

 Chapter 4: Presents all the subsystems that compose the DiVA framework for acquiring,

processing and storing data.

 Chapter 5: Defines the general process for analyzing a specific domain and shows some

examples of working applications.

 Chapter 6: Finish this document with some conclusions and future work.

D1.2v1 DiVA Documentation 5

2. DiVA Framework overview

2.1. Design criteria

The design of the DiVA framework is based on the following criteria:

 Scalability: it has to be flexible for including additional modules such as processing

algorithms or database applications. Moreover, it has to easily support the use of new

video sources (USB, IP, FireWire…) or video protocols (MPEG2, h264).

 Efficiency: it has to perform its operations without significantly increasing the overall

computational cost. Hence, complex operations have to be avoided. In addition, it has to

allow an efficient distributed processing.

 Generality: all its functionalities have to be developed using the simplest tools and

operations (if possible). Hence, it is not recommended to include any application

dependent software or code.

 Failure tolerance: it has to include mechanisms for detecting and correcting failures

(from the processing algorithms and the main modules of the framework) during

runtime execution. Thus, supervision tools have to be developed for verifying the

correct behavior of the DiVA system.

2.2. Main characteristics

The DiVA framework has the following main characteristics:

 Distributed environment for research, prototyping and deployment of visual analysis

systems with support for multi-camera and semantic information.

 Modular and multi-thread design for processing at frame level.

 Asynchronous operation mode based on a client-server model.

 Dynamic workflow composition (sequential or parallel connection of processing

algorithms) and update (on-line scalability) based on semantic information.

This framework can be abstracted in two levels (physical and logical) which are described in

the following chapters.

D1.2v1 DiVA Documentation 6

Figure 1. Global view of the DiVA framework

DB Query
manager Processing layer

Multimedia DB

Data storage

Data

Data request

Application
context

Acquisition layer

Presentation layer

Cuadros de
vídeo

Knowledge
DB

DiVA framework

Client-server framework

• Subsystems

• Multithread

Distributed processing

•Interconnection through the database (BD)

•Different application contexts

D1.2v1 DiVA Documentation 7

3. Physical part

3.1. Structure

The physical part (see Figure 1) is composed of the required hardware: the cameras and a

cluster of standard computers (PCs) connected through a fast Ethernet network. To cope with

bandwidth restrictions and to allow operation at real-time, the framework architecture is

composed of two networks. The critical framework modules are a set of rack-mounted PCs

interconnected by a dedicated Gigabit Ethernet (core network). The other framework modules

(mainly processing ones) are distributed in a 100BaseT Ethernet network around the core

network. Different types of cameras are plugged either to an acquisition card on a PC or directly

to the network for IP cameras. The processing modules are used for video acquisition, algorithm

execution and data storage. The main advantage of this architecture is its flexibility. Future

needs in computing power can be addressed by simply adding PCs (or replacing the oldest with

more powerful ones) in the cluster.

Figure 2. Physical description of the proposed framework.

3.2. Employed technologies

In Table 1, we can observe the technologies employed for the network in DiVA following

an OSI model. They have been chosen due to their versatility and their ease of use.

OSI model Technology

Transport layer TCP

Network layer IP

Link layer Ethernet

Physical layer Twisted pair

Table 1. DiVA technologies for communication

D1.2v1 DiVA Documentation 8

4. Logical part

The logical part is composed by three independent layers designed in a modular way with a

specific role (see Figure 3). The different modules of each layer can be distributed in several

ways allowing flexible configuration. The communication is based on a client-server model; the

flow control is realized through a TCP-based network. Data buffering between modules is

supported at both sides for avoiding network delay problems. The system also supports the

addition and removal of modules at operation time. Depending on application requirements,

layers can be combined into one single component with the required functionality.

Figure 3. Logical description of the DiVA framework

4.1. Interconnection between layers

For performing the interconnection between the different subsystems available in the DiVA

framework, we use TCP/IP sockets using standard Windows libraries available through the MFC

Windows library. The communication protocol has been simplified as much as possible.

However, this simplification does not impose constraints for extending the communication

protocol with, for example, authentication mechanisms and others.

Each subsystem contains a client and a server. The former allows the connection to other

DiVA subsystems (through their corresponding servers) and the latter is responsible for

providing access to the data contained by itself (e.g., video frames in the acquisition layer) to the

entire DiVA framework.

D1.2v1 DiVA Documentation 9

Before initializing a connection for starting the data exchange, the client application perform

the following steps:

1. Connect to the derived server using a predefined port.

2. Request ID by the client for the data exchange

3. Send of an ID by the server

4. The data exchange begins. For each client connected to the server, an independent

thread is created to serve such client (hence, many clients can be simultaneously

connected to the server).

4.2. Acquisition layer

This layer acquires the video from multiple video feeds and distributes it frame-by-frame to

the whole framework using a client-server model. For performance issues, the captured data is

sent to a storage module in the processing layer (Shared Memory Module). Video frames are

currently exchanged using baseline JPEG (ISO/IEC 10918-1) or uncompressed format. A time

stamp is attached to each frame at grabbing time and is used in the processing stage (e.g.,

tracking algorithms). Due to its modular design, the framework can easily support the addition

of new camera connection protocols by developing the corresponding video capture interfaces.

Currently it handles IP, IEEE1394, GigE and USB protocols, as well as input via video files.

Figure 4. Capture subsystem of the DiVA framework

Sistema de Captura

Capture interface

Transcodification to
DiVA format

Algorithms

Database

Frameserver

IP/PTZ
camera

GigE camera

1394 camera

D1.2v1 DiVA Documentation 10

4.3. Data Management layer

This layer stores and distributes non-visual information required for analysis purposes or the

metadata obtained by the processing layer. A database manager is included to control the use of

such information. This layer is composed of three database sub-systems:

 The Domain Ontology Database (DOD) provides the information of the modeled

application domains. Currently, it contains the domain knowledge description [2].

 The System Ontology Database (SOD) manages the description of the available

analysis tools. Currently, it is based on a recent knowledge description [2].

 The Analysis Results Database (ARD) stores the metadata generated by the

processing modules making them available for further analysis
1
. Hence, it allows the

exchange of the obtained results between processing modules in a distributed

configuration.

Moreover, two applications for managing the queries and requests of data by the processing

algorithms are included. The structure and dataflow of this layer is depicted in Figure 5.

Figure 5. Data Management layer

1
 This database sub-system can be extended for developing query-based applications.

DataManagement layer

ARD
Processing
algorithms

SGBD

SOD and DOD SGBD

D1.2v1 DiVA Documentation 11

4.3.1. DataServer

The ARD database (also called DataServer) is in charge of storing the results (partial or

final) generated by the processing algorithms. Moreover, it also includes information about all

the active modules of the DiVA system.

The DataServer has been implemented using standard MySQL language. Its design has been

done following relational database scheme. Figure 6 depicts the main elements included in the

data and their relations.

Figure 6. Class structure of the ARD

For allowing queries, a management application has been included using a multi-threaded

server. It allows to access to all data as well as to perform maintenance operations.

D1.2v1 DiVA Documentation 12

4.3.2. ContextServer

This database comprises the SOD and ARD databases. It allows to provide a context or

domain of application for each algorithm. It also includes a server and a manager for

communicating with the processing algorithms.

Currently, the ContextServer contains two types of information for representing domain and

system knowledge. The former defines the physical space where a real event occurs and which

can be observed by one or several cameras. It includes the scene objects, their interactions

(events) and the scene context. The latter describes the visual agent that analyzes the video

content (in our case, the algorithms of the DiVA system) including the analysis capabilities of

the system, the possible responses to the detected events and the system status. Figure 7 depicts

the entities that compose such database to describe the context information.

Figure 7. Domain and system knowledge included in the ContextServer

4.4. Processing layer

In DiVA, a processing module is a component responsible for some particular task not

related to the other layers (e.g. video analysis module, player module). The modules run

concurrently and asynchronously allowing to develop distributed applications: typically each

module will run on its own processor, but this is not mandatory. Moreover, some module

templates have been created for easy algorithm development and integration in the framework.

This layer communicates with the Acquisition and the Data Management layers to request

data (e.g., video frames, previous analysis results) and to store the obtained results. This data

exchange allows the distribution of processing capabilities. Moreover, this layer includes several

analysis algorithms that can be selected and combined for solving specific analysis problems.

D1.2v1 DiVA Documentation 13

An example of such distribution is depicted in Figure 8. It can be observed that the most

computational demanding tasks (e.g., motion detection) could be performed in more powerful

processing units and metadata analysis could be done in other units with less computational

power.

Sequential processing

Distributed processing in DiVA

Image

capture

Motion

detection

Post-

processing
Event

analysis
Alarm

Response

To alarm

Network

delivery

Image

capture

Network

send

Metadata

analysis
Alarm

Response

To alarm

IP camera Application 1 Application 2

Metadata

analysis
Alarm

Response

To alarm

Motion

detection

Metadata

generation

Database

storage

…
Application 3

Figure 8. Distributed processing scheme within DiVA framework

Currently, this framework performs two tasks: ontology interpretation and video analysis,

making use of the following modules:

 The Interpretation and Management Module (IMM) processes the knowledge

encoded in the domain and system descriptions, then combines it with user

preferences and finally requests the execution (to the Algorithm Server Module).

 The Algorithm Server Module (ASM) provides the processing capabilities to the

entire framework. It makes the visual analysis tools usable through a server.

 The Algorithm Repository Module (ARM) indexes the available analysis tools and

stores their compiled versions in order to provide the processing capabilities.

 The User Interface Module (UIM) interacts with the content consumer (e.g., human

user, software agent) to get its input and to show the obtained results.

D1.2v1 DiVA Documentation 14

4.4.1. Template for Processing algorithms

For creating a new component in the DiVA framework, an encapsulated component has

been developed with the objective of providing a template for all the algorithms that are to be

developed. Its objective is to encapsulate all the communication and management operations that

have to be performance.

This template has been developed in C++ having the following built-in functionalities:

 Data request&capture:

o It includes a client for connecting to the Acquisition Layer in order to choose

the appropriate FrameServer that provides the video frames. This capture could

be performed in sequential or continuous mode (in the latter case, using a frame

buffer).

o It includes a client for connecting to the ContextServer in order to provide an

application context to the processing algorithm.

o It includes a client for connecting to the DataServer in order to provide an

access to the data storage in such database (results of other algorithms).

 Data Display: it incorporates a standard method for displaying data in the screen.

 Image processing: it includes specific functions and locations to add the operations to

perform the video analysis.

In summary, the development of applications or algorithms in the DiVA framework requires

to include the processing operations in the particular functions that have the provided template.

Hence, connecting with other DiVA components is done in an automatic and transparent way

allowing to the designer to focus on the algorithm itself and not on its integration in DiVA.

D1.2v1 DiVA Documentation 15

5. DiVA for specific domain analysis

For the analysis of video content from a specific domain, the following sequence of

operations is performed:

1. Initialization. The UIM gets the necessary data for the analysis (e.g., domain to

analyze, user preferences) and configures the IMM. Then, the IMM requests the

semantic information of the domain and the analysis capabilities to the DOD and

SOD modules.

2. Semantic-based workflow composition:

a. The IMM requests to the ASM the analysis tools available for the selected

domain by using the data indexed in the ARM. Then, the instances of the

existing visual analysis tools are created and properly linked to the domain

knowledge.

b. The IMM inspects the semantic system information to calculate the

necessary resources (parameters) and to allocate memory for them in the

SMM. Instances of the parameters are created and linked with the

Algorithm instances.

c. The IMM interprets the system and domain semantics to select the required

visual analysis tools among the available ones for domain analysis. Then,

this information is sent to the ARM (via the ASM) for the creation of

resources. An example of such interpretation is provided in this work[3]

3. Analysis. Finally, the IMM begins the sequential processing of the analysis workflow via

execution requests to the ASM. The analysis is performed until the video file has been

finished or the system is turn off (for live on-line video analysis). Results obtained by

each execution are stored in the SMM that made them available for further analysis or

display purposes. During run-time operation, the update of the analysis workflow

(addition or removal) is performed.

D1.2v1 DiVA Documentation 16

6. Conclusions and future work

This document has described a distributed framework for video analysis that allows flexible

and dynamic configuration at run-time. It provides support for acquiring, transmitting,

processing and storing data (video content and metadata). It is structured into different layers in

charge of each type of tasks in the framework. Due to low computation management cost, it

operates at real-time over standard computers

Additionally, it defines a flexible environment to develop video-based applications via easy

component integration. Hence, the effort of the developer is focused on the image processing

operations instead on the integration of the algorithm.

For the future, other extensions and improvements will be made on the global system, like

integration of a compressed video analysis path or adaptation of the system to work under Linux

(using POSIX threads for multitasking scheduling). In particular, a communication restriction

has been observed when dealing with high-resolution images as this data requires high

bandwidth. Moreover, DiVA currently operates using uncompressed frames and, therefore, a

high transmission delay is introduced in this situation. Hence, a future improvement would be to

focus on developing efficient transmission technics for images and video (using codification

approaches) as well as adapting existing ones (JPEG, MJPEG…).

D1.2v1 DiVA Documentation i

References

[1] J. C. SanMiguel, J. Bescós, J. M. Martínez, and A. Garcia. Diva: A distributed video

analysis framework applied to video-surveillance systems. In Proc. of IEEE Int. Workshop

on Image Analysis for Multimedia Interactive Services, pages 207-210, 7-9 May 2008

[2] J. C. SanMiguel, J. M. Martínez, and A. García. An ontology for event detection and its

application in surveillance video. In Proc. of the IEEE Int. Conf. on Advanced Video and

Signal based Surveillance, pages 220-225, Genoa (Italy), 2-4 September 2009

[3] J.C. SanMiguel, José M. Martínez, "A semantic-guided and self-configurable framework

for video analysis", Machine Vision and Applications, Springer, ISSN 0932-8092 (Print)

1432-1769 (Online, December 2011) (Digital Object Identifier: 10.1007/s00138-011-

0397-x)

http://dx.doi.org/10.1007/s00138-011-0397-x
http://dx.doi.org/10.1007/s00138-011-0397-x

D1.2v1 DiVA Documentation ii

Glosary

ASM Algorithm Server Module

ARM Algorithm Repository Module

ARD Analysis Results Database

DiVA Distributed Video Analysis

DOD Domain Ontology Database

IMM Interpretation and Management Module

IP Internet Protocol

JPEG Joint Picture Experts Group

MFC Microsoft Foundation Classes

OpenCV Open Computer Vision library

SOD System Ontology Database

TCP Transport Control Protocol

USB Universal Serial Bus

UIM User Interface Module

D1.2v1 DiVA Documentation iii

Appendix

A. Example of usage

Here, we provide an example of usage of the DiVA framework for foreground segmentation

algorithms showing some screen shots of the previously presented modules.

 After installing the DiVA package version 1.3. Download the demo and unzip the package.

For running the components of the demo, you have to go to the directory in which it has been

installed and execute the desired BAT file.

Fig. A.1: Directory for DiVA demo

As it can observed, there are 6 BAT files: DiVAGraphicServer (graphical tool for executing

the FrameServers of the acquisition layer), DiVAGraphicVideoRecorder (graphical tool for

recording videos from a FrameServer), foreground segmentation algorithms based on

background subtraction (DiVAGammaBkgExtractor, DiVAGraphicStatBkgExtractor and

DiVAGraphicFDGaussBkgExtractor) and performance assessment tools

DiVAGraphicAlgorithms). In the following subsections, we briefly describe how to use them.

A.1 FrameServer manager

D1.2v1 DiVA Documentation iv

After executing the BAT file of the DiVAGraphicServer application, we obtain the

following window:

Fig. A.2: Aspect of the graphical tool for FrameServer management

By using the menu on top-left area, we can start a FrameServer:

1. Click on the button “New Server”. A new menu appears for configuring each type

of available FrameServers.

2. Choose the IP one and new appears a new window.

Fig. A.3: Window for configuring an IP frameserver

D1.2v1 DiVA Documentation v

3. This window contains the configuration parameters of the IP FrameServer.

4. Click on the button “Start Server” and the main window will change (if everything

is correct) as depicted in Fig. A.4

Fig A.4: FrameServer manager with IP server activated

Finally, the IP frameserver is working and capturing frames from the selected IP camera.

After this moment, any application of the DiVA framework can start using the captured data.

A.2 Processing algorithms

Among the available processing algorithms in the DiVA demo, there is an application for

executing up to four foreground segmentation algorithms in order to compare their results.

To start this application, please execute the corresponding BAT file and new window

appears similar to Fig. A.5. On the top-left part, the user is able to select which algorithms wants

to execute and to which FrameServer is going to be connected. Then, click on the “start” button

to create such algorithm. For changing the parameters of the algorithm, a tab appears on the

bottom-left part of the windows for such interaction. Finally, the results are shown on the sub-

windows included in the application.

D1.2v1 DiVA Documentation vi

Fig A.5: 1.1.1 DiVAGraphicAlgorithms application

